Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas

نویسندگان

  • Zhiwei Wang
  • Qian Wang
  • Xiaodong Wu
  • Lin Zhao
  • Guangyang Yue
  • Zhuotong Nan
  • Puchang Wang
  • Shuhua Yi
  • Defu Zou
  • Yu Qin
  • Tonghua Wu
  • Jianzong Shi
چکیده

The Qinghai-Tibetan Plateau (QTP) contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) product based on turning points (TPs), which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI) and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost regions than the environmental factors (including permafrost) related to the underlying surface conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai–Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost...

متن کامل

The Coherence Analysis for Detecting the Subsidence at Permanent Frozen Area in Qinghai-tibetan Plateau

The surface displacement by seasonally freezing bulge and thawing subsidence are main hazards for engineering construction in permafrost regions, especially for the Qinghai-Tibet railway. For detecting the distortion at permafrost area, we try to study the interferometric method of monitoring the deformation at permafrost area with time-series EnviSat ASAR data. In this paper, the coherence cha...

متن کامل

Perspectives on Environmental Study of Response to Climatic and Land Cover/Land Use Change over the Qinghai-Tibetan Plateau: an Introduction

Mountain areas seem to be especially susceptible to global climate change and are reported to have warmed more, and perhaps sooner, than the rest of the globe (e.g., Beniston and Rebetez, 1996). Liu and Chen (2000) have argued that the Qinghai-Tibetan Plateau is a harbinger of climate change due to its early and accelerated warming. It represents the largest high-elevation region on the globe, ...

متن کامل

Vegetation Changes along the Qinghai-Tibet Plateau Engineering Corridor Since 2000 Induced by Climate Change and Human Activities

The Qinghai-Tibet (QT) Plateau Engineering Corridor is located in the hinterland of the QT Plateau, which is highly sensitive to global climate change. Climate change causes permafrost degradation, which subsequently affects vegetation growth. This study focused on the vegetation dynamics and their relationships with climate change and human activities in the region surrounding the QT Plateau E...

متن کامل

Ecological and environmental issues faced by a developing Tibet.

T Tibetan plateau, covering an area of 2.6 million km with an average elevation of over 4000 m, often called “the third pole of the world”, has fundamental significance to the environment of China, Asia, and the world. The Tibetan plateau is called a “water tower” due to its downstream influence on approximately 40% of the world’s population. It is a region with rich species diversity and a hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017